3.584 \(\int \cot ^{\frac{7}{2}}(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=380 \[ \frac{2 a \left (5 a^2 A-15 a b B-14 A b^2\right ) \sqrt{\cot (c+d x)}}{5 d}+\frac{\left (3 a^2 b (A-B)+a^3 (A+B)-3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{\left (3 a^2 b (A-B)+a^3 (A+B)-3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{\left (-3 a^2 b (A+B)+a^3 (A-B)-3 a b^2 (A-B)+b^3 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{\left (-3 a^2 b (A+B)+a^3 (A-B)-3 a b^2 (A-B)+b^3 (A+B)\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}-\frac{2 a^2 (5 a B+9 A b) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (a \cot (c+d x)+b)^2}{5 d} \]

[Out]

((a^3*(A - B) - 3*a*b^2*(A - B) - 3*a^2*b*(A + B) + b^3*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt
[2]*d) - ((a^3*(A - B) - 3*a*b^2*(A - B) - 3*a^2*b*(A + B) + b^3*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]
]])/(Sqrt[2]*d) + (2*a*(5*a^2*A - 14*A*b^2 - 15*a*b*B)*Sqrt[Cot[c + d*x]])/(5*d) - (2*a^2*(9*A*b + 5*a*B)*Cot[
c + d*x]^(3/2))/(15*d) - (2*a*A*Sqrt[Cot[c + d*x]]*(b + a*Cot[c + d*x])^2)/(5*d) + ((3*a^2*b*(A - B) - b^3*(A
- B) + a^3*(A + B) - 3*a*b^2*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) - ((3*
a^2*b*(A - B) - b^3*(A - B) + a^3*(A + B) - 3*a*b^2*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]
])/(2*Sqrt[2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.769157, antiderivative size = 380, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3581, 3607, 3637, 3630, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{2 a \left (5 a^2 A-15 a b B-14 A b^2\right ) \sqrt{\cot (c+d x)}}{5 d}+\frac{\left (3 a^2 b (A-B)+a^3 (A+B)-3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{\left (3 a^2 b (A-B)+a^3 (A+B)-3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{\left (-3 a^2 b (A+B)+a^3 (A-B)-3 a b^2 (A-B)+b^3 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{\left (-3 a^2 b (A+B)+a^3 (A-B)-3 a b^2 (A-B)+b^3 (A+B)\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}-\frac{2 a^2 (5 a B+9 A b) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (a \cot (c+d x)+b)^2}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

((a^3*(A - B) - 3*a*b^2*(A - B) - 3*a^2*b*(A + B) + b^3*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt
[2]*d) - ((a^3*(A - B) - 3*a*b^2*(A - B) - 3*a^2*b*(A + B) + b^3*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]
]])/(Sqrt[2]*d) + (2*a*(5*a^2*A - 14*A*b^2 - 15*a*b*B)*Sqrt[Cot[c + d*x]])/(5*d) - (2*a^2*(9*A*b + 5*a*B)*Cot[
c + d*x]^(3/2))/(15*d) - (2*a*A*Sqrt[Cot[c + d*x]]*(b + a*Cot[c + d*x])^2)/(5*d) + ((3*a^2*b*(A - B) - b^3*(A
- B) + a^3*(A + B) - 3*a*b^2*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) - ((3*
a^2*b*(A - B) - b^3*(A - B) + a^3*(A + B) - 3*a*b^2*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]
])/(2*Sqrt[2]*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])
^(n + 1))/(d*f*(n + 2)), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \cot ^{\frac{7}{2}}(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx &=\int \frac{(b+a \cot (c+d x))^3 (B+A \cot (c+d x))}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}-\frac{2}{5} \int \frac{(b+a \cot (c+d x)) \left (\frac{1}{2} b (a A-5 b B)+\frac{5}{2} \left (a^2 A-A b^2-2 a b B\right ) \cot (c+d x)-\frac{1}{2} a (9 A b+5 a B) \cot ^2(c+d x)\right )}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}-\frac{4}{15} \int \frac{\frac{3}{4} b^2 (a A-5 b B)+\frac{15}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)+\frac{3}{4} a \left (5 a^2 A-14 A b^2-15 a b B\right ) \cot ^2(c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}-\frac{4}{15} \int \frac{-\frac{15}{4} \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )+\frac{15}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}-\frac{8 \operatorname{Subst}\left (\int \frac{\frac{15}{4} \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )-\frac{15}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{15 d}\\ &=\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}-\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}-\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}+\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}+\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}-\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}-\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}\\ &=\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}+\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}\\ &=\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{\left (a^3 (A-B)-3 a b^2 (A-B)-3 a^2 b (A+B)+b^3 (A+B)\right ) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{2 a \left (5 a^2 A-14 A b^2-15 a b B\right ) \sqrt{\cot (c+d x)}}{5 d}-\frac{2 a^2 (9 A b+5 a B) \cot ^{\frac{3}{2}}(c+d x)}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (b+a \cot (c+d x))^2}{5 d}+\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{\left (3 a^2 b (A-B)-b^3 (A-B)+a^3 (A+B)-3 a b^2 (A+B)\right ) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}\\ \end{align*}

Mathematica [A]  time = 2.33852, size = 286, normalized size = 0.75 \[ \frac{2 \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (-\frac{\left (-3 a^2 b (A+B)+a^3 (A-B)+3 a b^2 (B-A)+b^3 (A+B)\right ) \left (\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )}{2 \sqrt{2}}+\frac{a \left (a^2 A-3 a b B-3 A b^2\right )}{\sqrt{\tan (c+d x)}}+\frac{\left (3 a^2 b (A-B)+a^3 (A+B)-3 a b^2 (A+B)+b^3 (B-A)\right ) \left (\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )}{4 \sqrt{2}}-\frac{a^2 (a B+3 A b)}{3 \tan ^{\frac{3}{2}}(c+d x)}-\frac{a^3 A}{5 \tan ^{\frac{5}{2}}(c+d x)}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(2*Sqrt[Cot[c + d*x]]*(-((a^3*(A - B) + 3*a*b^2*(-A + B) - 3*a^2*b*(A + B) + b^3*(A + B))*(ArcTan[1 - Sqrt[2]*
Sqrt[Tan[c + d*x]]] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]))/(2*Sqrt[2]) + ((3*a^2*b*(A - B) + b^3*(-A + B)
+ a^3*(A + B) - 3*a*b^2*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Ta
n[c + d*x]] + Tan[c + d*x]]))/(4*Sqrt[2]) - (a^3*A)/(5*Tan[c + d*x]^(5/2)) - (a^2*(3*A*b + a*B))/(3*Tan[c + d*
x]^(3/2)) + (a*(a^2*A - 3*A*b^2 - 3*a*b*B))/Sqrt[Tan[c + d*x]])*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Maple [C]  time = 0.796, size = 17628, normalized size = 46.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [A]  time = 1.70487, size = 446, normalized size = 1.17 \begin{align*} -\frac{30 \, \sqrt{2}{\left ({\left (A - B\right )} a^{3} - 3 \,{\left (A + B\right )} a^{2} b - 3 \,{\left (A - B\right )} a b^{2} +{\left (A + B\right )} b^{3}\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 30 \, \sqrt{2}{\left ({\left (A - B\right )} a^{3} - 3 \,{\left (A + B\right )} a^{2} b - 3 \,{\left (A - B\right )} a b^{2} +{\left (A + B\right )} b^{3}\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 15 \, \sqrt{2}{\left ({\left (A + B\right )} a^{3} + 3 \,{\left (A - B\right )} a^{2} b - 3 \,{\left (A + B\right )} a b^{2} -{\left (A - B\right )} b^{3}\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - 15 \, \sqrt{2}{\left ({\left (A + B\right )} a^{3} + 3 \,{\left (A - B\right )} a^{2} b - 3 \,{\left (A + B\right )} a b^{2} -{\left (A - B\right )} b^{3}\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) + \frac{24 \, A a^{3}}{\tan \left (d x + c\right )^{\frac{5}{2}}} - \frac{120 \,{\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2}\right )}}{\sqrt{\tan \left (d x + c\right )}} + \frac{40 \,{\left (B a^{3} + 3 \, A a^{2} b\right )}}{\tan \left (d x + c\right )^{\frac{3}{2}}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/60*(30*sqrt(2)*((A - B)*a^3 - 3*(A + B)*a^2*b - 3*(A - B)*a*b^2 + (A + B)*b^3)*arctan(1/2*sqrt(2)*(sqrt(2)
+ 2/sqrt(tan(d*x + c)))) + 30*sqrt(2)*((A - B)*a^3 - 3*(A + B)*a^2*b - 3*(A - B)*a*b^2 + (A + B)*b^3)*arctan(-
1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + 15*sqrt(2)*((A + B)*a^3 + 3*(A - B)*a^2*b - 3*(A + B)*a*b^2 -
(A - B)*b^3)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 15*sqrt(2)*((A + B)*a^3 + 3*(A - B)*a^2*b
- 3*(A + B)*a*b^2 - (A - B)*b^3)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + 24*A*a^3/tan(d*x + c)
^(5/2) - 120*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2)/sqrt(tan(d*x + c)) + 40*(B*a^3 + 3*A*a^2*b)/tan(d*x + c)^(3/2))/d

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+b*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (b \tan \left (d x + c\right ) + a\right )}^{3} \cot \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^3*cot(d*x + c)^(7/2), x)